
Computational Modeling :

Confessions of a Computer Scientist

Terry Jones

Santa Fe Institute

1660 Old Pecos Trail, Suite A

Santa Fe, NM 87505

terry@santafe.edu

May 10, 1994

1 Introduction

When I first arrived at SFI, literally overflowing with naive enthusiasm, I knew
very little about modeling. I was to implement John Holland’s Echo system for
UNIX, C and X windows, thereby bringing the world out of the dark ages and
ushering in a new era of enlightenment.

Now, almost two years later, it seems like a case of a fool rushing in where
angels would fear to tread. My untrammeled enthusiasm seems at times to
to have matured into a somewhat weary cynicism. My eagerness to jump on
new problems has been replaced with an almost paralyzing reluctance to get
involved with anything that doesn’t seem to have every i dotted and every t
crossed before the project has begun. In fact, my outlook is far from wholly
negative, but I do have many serious concerns and questions about how one
should proceed having made a decision to build a computer model.

I have discussed many of these ideas with members of the SFI community.
Although much of what I write is the product of my own thinking and experience
with Echo, almost all of it can be traced to hundreds of discussions at SFI,
both with the more-or-less permanent members and with those visitors who
have wandered (or been pushed) into my office. In addition, in March I had
a chance to “interview” Marc Feldman, Chris Langton, Harold Morowitz and
Alan Perelson about some of the topics below. I have tried to incorporate some
of what we discussed in what follows.

2 Fundamentals And Assumptions

At the outset, I wanted to try to establish a common framework for discussion of
my concerns. Although I will not attempt to define exactly what an “adaptive

1



agent based system” might be, I do want to be fairly explicit about the type of
modeling I am concerned with.

The following premise is admittedly a narrow view of modeling, but it is
simple to define, is representative of many modeling efforts, and at least provides
a starting point for discussion. This simple premise is sufficient for me to discuss
many concerns which will be among those that we should be addressing when
we adopt a more sophisticated view of the modeling process.

I feel that I should stress the fact that the following discussion is intended
to address perceived difficulties with a particular type of computer model. I
am not concerned with cognitive models that we use to deal with the world,
mathematical models used by physicists to explain the movement of the planets,
or differential equations used by immunologists to describe the dynamics of the
immune system. I know even less about these models than I do about computer
models of systems with many agents, and would not presume to comment on
them. A common humorous sentiment at SFI would deem that such ignorance
is no reason not to write at least a few papers on the subject, but I shall try to
refrain.

The view of modeling I will adopt in this article is the following. Some
phenomenon, which I shall call X , is observed in the real world. X is of in-
terest, but is not well understood, and, in an effort to increase understanding
about X , a model of it, M(X ), is constructed. This simple view of a modeling
process is more general than I need. My concerns apply to phenomena that
involve large numbers of interactions between large numbers of agents, possi-
bly over long periods of time. The particular types of M(X ) of concern are
computer programs that attempt to model X via the construction of idealized
agents within the computer, which are involved in idealized interactions in some
idealized computational world.

A most important aspect of these assumptions is that the model is con-
structed with the explicit aim of increasing our understanding of X . I am not
concerned with models whose aim is otherwise.

Given this, I will take a further liberty, and make the assumption that M(X )
is constructed so as to be a simplification of X . This seems like a reasonable
step, as one is unlikely to (knowingly) construct a model which proves less open
to understanding than the original phenomenon. This assumption does not say
that a seemingly complex problem cannot be more easily solved via embedding it
in an apparently even more complex framework whose solution can be obtained.
This technique is very common in many fields1. The basis of the assumption is
the word “understanding”. That is, we construct M(X ), the simplification of
X , to be more understandable than X . For now, I am deliberately ignoring the
question of exactly what understanding might be. I will return to this subject.

In summary, we have X , a model of it, M(X ), and the assumptions that
the purpose of constructing M(X ) is to increase understanding, and that M(X )

1An example is the mathematician who knows how to make a cup of coffee from scratch,

but when handed a kettle of boiling water, begins by pouring it out so as to create a problem

whose solution is already known.

2



is a simplification of X . All of which leads to a final assumption and begs an
important question.

The assumption is that the success and worth of a model should be judged by
the extent to which it succeeds in our stated goal of increasing our understanding
of X . If the model is very realistic and captures minute details of X but is, as
a result, equally opaque, then the model, by these standards, should be judged
a failure. Admittedly, this is a narrow-minded view of success. It would be
a fantastic computational achievement to build a completely realistic virtual
ecosystem (no matter how few the number of represented agents or species),
but if it is as complex as the original, then we may gain less in the way of
understanding than a simpler model might provide.

I am not claiming that complex computational models of complex systems
will not, in general, increase understanding. I am merely establishing a yardstick
by which to judge what we build. If I walk away from the model with the feeling
that I haven’t learned anything about the original system, then I will judge that
model to be worthless.

The question begged by our assumption that model construction involves
simplification is taken up the the next section.

3 Issues In Model Building

This section discusses one very important question, and then briefly touches on
several other issues that should be considered.

The assumption that a model is a simplification raises the following question:
What aspects of X should (at least initially) be omitted in the construction of
M(X )? This, to me, is the fundamental question of model building. To max-
imize the potential for understanding the model you construct (and therefore,
hopefully, for understanding the original phenomenon of interest), it seems rea-
sonable to try to include in M(X ) those aspects of X (and no others) that are
necessary to create those qualities of X that you were originally interested in
understanding.

In a trivial sense, one could argue that successful model building is, in some
cases, as difficult as understanding the original problem. If you need to know
exactly which components of some complex system are important in order to
build a successful model, then the process of identifying these components in
order to construct a successful model may provide all the understanding of
the original system that you initially desired. A similar situation occurs when
evolutionary algorithms are constructed to search for objects with desirable
properties. Here, one needs a so-called fitness function that can identify the
most desirable objects, but the knowledge about the system necessary for the
construction of such a function (in a computer) might be comparable to the
knowledge needed to solve the original problem directly.

Having made the decision to build a model, one must address this question
(what aspects of X to omit). Considering that the model might take a year
to implement and cost thousands of dollars, these decisions are not something

3



that should be taken lightly. This is not to suggest that a model is necessarily
something set in stone – far from it. In most cases models will be refined,
enhanced, redesigned, and perhaps reimplemented. In an ideal world, one could
repeat this cycle indefinitely, without cost, until the ideal model was constructed
and its truth would be self-evident.

But in the more mundane world of academia, we are faced with issues of
unreliable funding, publication pressure, migratory graduate student program-
mers, and, dare I say it, self-promotion. These have the unfortunate dual effects
of making refinement, redesign and even abandonment far less likely and, simul-
taneously, hurrying into print the first sniff of anything that might be construed
as results. In a self-perpetuating cycle, others involved in this brave new research
paradigm hungrily gobble up these tasty tidbits, all the while applauding, and
thus enhancing the credibility of their own endeavors.

Probably I am being too extreme. I believe what I have just written, but
it does not preclude the existence of good modelers and good models. I have
heard that good judgement comes from experience and that experience comes
from bad judgement. If so, there is hope that inexperienced modelers (of which
I am surely one) may become good modelers.

A final comment on the issue of what to omit and what to include is the
following generalization. There seems to be a tradeoff between how faithful your
model is to details of the real world and the extent to which you can use it to in-
crease understanding. If you decide to model the dynamics of the trading floor
of the New York Stock Exchange using a one-dimensional cellular automata
with ten binary sites, you may construct a model whose dynamics you under-
stand fairly well, but you’re probably not going to come away with an increased
understanding of the stock exchange. At the other extreme, if you choose to
model the brain by constructing a model with 1013 completely realistic artificial
neurons each simulated on a SPARC in a fantastically complicated network of
1010 CM5’s, you may wind up with an exceptionally intelligent program, but
you probably will not understand much about what a mind is or how the brain
thinks. Of course, you’ll have encyclopedic low-level knowledge of the brain,
but you had that before you built the model.

Of course these examples are somewhat ridiculous, and could be dismissed
if it weren’t so easy to make choices whose effects will be similar. As with most
of the issues I will raise, these are questions I have considered in the light of the
Echo model. Echo is very simple compared to the fanciful brain model described
above, yet I often feel the same way when trying to understand why the model
behaves as it does. Even answering the simplest questions I can formulate about
the behavior of Echo can take considerable legwork. Some people have pointed
out, with justification, that this could be eased if I weren’t so lazy and actually
wrote some code to automate part of this search, instead of moping around
bemoaning the situation.

The next issue I would like to briefly address concerns why one would want
to build a model. I have met and talked with many people who are very taken
with the idea of building a model of the kind of system they deal with. This
interest is a good thing in general, and will undoubtedly push the development

4



of good models (via the development of bad ones). The field as a whole can
be expected to profit. But what of the individuals who, through no fault of
their own, will be the guinea pigs in this development? I think it is important,
when considering the construction of a model, to ask oneself exactly what one
hopes to learn from the model. What would be satisfactory? When can you
stop? How will you know if you have succeeded or failed? How, exactly, will
you construct the model? What will be in the model and what will not? These
questions are very obvious, but I think they are neglected. The eagerness to
build a model, the widespread availability of computers and programmers, and
lack of experience combine to produce projects that are begun prematurely. In
some cases, the best conclusion might be that one should not build a model,
that valuable research dollars would be better directed elsewhere.

I am also very concerned about the interface between the expert and the
programmer (assuming these two are not one and the same). If you are con-
sidering employing someone to build a model, and have not thought about how
you will ever know whether your model contains bugs that effect its perfor-
mance, you should. No programmer is perfect, and there are probably very few
programs less than a year old of, say, ten thousand lines that are completely
bug free. Assuming this is true, there is a high probability that if you write
papers describing the results of such a model, you will not know what you’re
talking about. My Echo code (as opposed to John Holland’s) is approximately
fifteen thousand lines of C code, and is approximately eighteen months old. The
last serious bug I found was probably about six months ago. Before that I had
made numerous presentations, showed graphs and offered explanations of Echo
phenomena that were all potentially badly flawed – it is not even clear in some
cases to what extent the results were affected.

Unfortunately, problems like this are a fact of life in computer science. But
by making sensible decisions in planning the construction of a model, they can
be reduced. For example, each choice you make when deciding what should be
in a model and what should not, directly affects what needs to be implemented
and what does not. If you make a set of choices that require the construction
of a very difficult computer program, you are simultaneously decreasing the
probability that the model can be constructed without serious error. Not to
mention making something that takes longer to write and is less understandable
to and harder to maintain for the average programmer. Part of the high level
decision-making process about what should be in a model should be informed
by what each decision will mean at the programming level.

If you are in this position, you should also be aware that unless your model
is very simple, the programmer will probably be faced with (and make) choices
whose outcomes can dramatically alter the program’s behavior. Some of these
decisions will be trivial and may only affect, for example, running time and
precision. Others will be less so. A subtle example is the choice of a random
number generator – different generators have different characteristics. There are
many tests for randomness, and some pass certain tests and fail others. This will
produce different results even for generators that are considered reliable. The
existence of incredibly poor generators is almost folkloric amongst computer

5



scientists, yet many people are unaware of this problem, and it is by no means
a thing of the past. Two years ago I was shown a random sequence produced
by a leading personal computer company – it generated about thirty different
numbers before beginning the same cycle, which it then produced indefinitely!

As a not-so-subtle example, when implementing a population of Echo agents
at a site, I used a variable length array representation. When an agent self-
reproduced, I added the new copy of the agent to the end of the array. This
was simplicity in itself and was of course very fast. During a presentation, Bob
Axelrod asked a question that made me realize that I had implicitly made an
important assumption. Surely the new agent should be placed next to its parent?
I at once implemented this, completely at a loss as to how I had overlooked it in
the first place. Later I considered that this was perhaps not the way it should
be, and that some situations would be better modeled under the first scenario.
I do know that the choice has a very great effect on the dynamics of Echo. This
example is still somewhat subtle as it represents an error that was made when
I failed to realize that I had a choice.

When you realize that a choice needs to be made, it is often the case that
one of the possibilities will appear to “push” the system in a certain direction. If
one is interested in seeing the emergence of some phenomenon, it is important to
know to what extent what you get is a result of how far you pushed the system in
that direction. Some decisions that will influence the extent to which the system
is so pushed will be made by the programmer – quite possibly unbeknownst to
anyone.

Lastly, it is important to consider what sort of information you want to
extract from your model, and how you want to display it. My experience has
been that one of the hardest things is knowing how to display information
effectively. Getting it is a minor annoyance compared to the task of displaying
it in a way that allows one to see at a glance some interesting behavior. In
addition to seeing interesting behavior, it is helpful if you can explain it – at
least in terms of the model. More on that below.

4 Using Your New Model

Having built a model, and convinced yourself that it is more or less a correct
implementation, it would be a shame not to take it for a test drive. You start
the program, create some agents and let the system run for some time. Perhaps
you have colorful graphics which displays how some features of your model are
unfolding. What happens next?

Two of the main uses of models are explanation and prediction. In the first,
we want to know why a certain system (either X or M(X )) behaved in some
way. We want to be able to explain past events such as stock market crashes,
extinctions, oscillations, migratory patterns, the persistence of structures and so
on. In the second, we would like to tackle the (usually) harder problem of using
M(X ) to make predictions about X . Not content with why the stock market
crashed, we’d like to know when the next crash will take place.

6



My experience has taught me that both types of questions are very hard to
answer. Let’s start with explanation and, of course, an example from experi-
ences with Echo. A relatively simple Echo world that we have experimented
with contains one site with three types of agents, which we call ants, flies and
caterpillars. These are idealized versions of those animals and, at least initially,
the Echo world contains an idealized triangular relationship among them. Look-
ing at many runs of the same world, it is common to see one agent doing well
and for this to be followed by a reversal of fates wherein the agent that was do-
ing well becomes low in numbers and some other agent’s numbers grow quickly
until it is as successful as the original agent was.

A seemingly simple question is: Why? Why did the flies (say) suddenly
fall rapidly in numbers and why did the ants (say) begin to do so well? There
was a time when, if asked a question like this, I would try to explain what
had happened. It is reasonably simple to come up with an entirely plausible
hypothesis that nicely explains the observed dynamics. Unfortunately, when
one looks a little closer, the hypothesis is very often proved completely false.
After briefly scratching my head, I could deliver a second even more plausible
account of what had transpired. Confirming that this was also incorrect would
take a little longer and require deeper digging into the system. Eventually, after
perhaps eight hours, I would have ten hypotheses, every one of which sounded
perfectly reasonable and every one of which was absolutely wrong. Generating
new hypotheses becomes increasingly hard.

This brings me back to a point on visualization. There can be no doubt
that pictorial representations can instantly show structure that could not be
detected in other representations. I am a great believer in tools for visualization
(not that I have written any particularly good ones – let’s say that I believe in
it in theory), but visual presentations will naturally lead to interpretation and
hypothesis formation. The hypotheses so formulated could easily be wrong. I
agree that a picture paints a thousand words, but in our case, it would be nice
to know what the actual words are.

If it is so hard to explain the performance of an Echo run, what hope have
we for explaining events in the systems that it is intended to model? The model
is vastly idealized, we have perfect knowledge of every interaction in the system,
we can test hypotheses, we can stop the run, we can run it backwards, we can
introduce or remove agents, edit their genomes, undo mutations, play with fifty
parameters, and yet it takes hours to answer practically the simplest question
one could ask. What is wrong here? Are we asking the wrong questions? I
think the answer to this question is possibly “Yes.”

On the few occasions when I have traced every detail of an Echo run to get
an answer to a question such as this, the result has always been a set of chance
events that slightly altered the probability of some set of potential interactions.
For example, a mutant ant is created that has a 0.8 probability of beating a
“normal” fly in combat rather than the 0.6 probability a “normal” ant would
have. Or a mutation in the trading gene of an agent allows it to trade with a
copy of itself. As a result, over a relatively long period, this agent does well and
eventually creates an offspring that is exceedingly lucky to survive but which

7



leaves an offspring that takes over the world (after itself passing through the
eye of a needle).

This is the kind of explanation I can give, and it’s not very satisfying to
that part of our cultural heritage which would prefer to hear simple and elegant
high-level explanations that are typically among the first hypotheses to be re-
jected when one starts digging. We want to hear that the ants drove the flies to
extinction as a result of some instantaneous and ingenious evolutionary adapta-
tion. The truth, at least in Echo, which I guess will not surprise any biologist, is
that a collection of tiny accidents and chance encounters combined to produce
what we saw. Moreover, this set of events is simply one among countless other
sets that could have transpired.

As I said, this observation about Echo is not too surprising to some people,
but it does clash with our societal desire for the nice causal explanations that
allow us to deal with the world so successfully. A simple explanation of what
happened does not exist. The only point of all this is that we tend to look for
and expect simple answers to simple questions. If your aims in model building
are to uncover pithy truths, you may come away disappointed.

All of which leads me to the second hoped-for use of modeling: prediction.
Given the above description of the search for reason in a single time series, it
should be apparent that prediction in such highly stochastic models as going to
be difficult at best. The extent to which they will allow us to actually complete
the modeling loop and make predictions about the real world is another question
altogether. The further we try to extend such predictions (time-wise) the less
likely they are to eventuate.

The apparent solution to this problem is to aim to make probabilistic state-
ments. Having established that the model is a reasonable reflection of the origi-
nal system, a large number of runs might indicate the probability that a certain
phenomenon will be observed. This is a far more modest aim, but if even it
could be achieved, it would be very important and useful in real systems. This
kind of approach could also be used to develop a feel for the sensitivity of var-
ious parameters in the system. These aims are common to many of the people
involved in modeling efforts at SFI.

5 Conclusions

This section contains some high level thoughts about modeling, explains my
position (which is not as negative as some think) and generally tries to end on
a happy and optimistic note.

Firstly, I think it is very important to question the extent to which we can
regard modeling as a scientific process. Harold Morowitz has raised some of these
issues with me on a couple of occasions. He has talked about such things as
falsifiability (e.g. on what grounds should you throw a model out) and scientific
method in general. I would like to think that we will see the development of
something akin to the scientific method employed in other fields. This would
give us (at least) four important things.

8



Firstly, it would instruct the modeler. The standards in other scientific
disciplines lay down rules that must be followed. For example a fundamental
idea is that of control experiments. Children learn about this in high school
and beyond. We are taught to recognize a well controlled experiment, and
when we do our own experiments, we understand the need for a control and,
more generally, for sticking with accepted scientific methods.

Secondly, if such methods existed and were widely accepted and in widespread
use, it would allow people to have confidence in each other’s work. At the mo-
ment I don’t even trust myself, and it consequently feels like an enormous leap
of faith to read a paper or attend a seminar on modeling and to accept it at
face value. I cannot see any reason why I should particularly believe anything
that is said to me about the properties of some complicated model.

Thirdly, if a more-or-less rigorous scientific method for modeling existed,
we would make progress towards repeatability. It is a common and important
practice in science to repeat experiments performed in one laboratory in a lab-
oratory elsewhere. I don’t think anyone would deny this. However, in the field
of computational modeling of adaptive agent based systems, repeatability is the
exception rather than the norm. The lack of rigor in our field can be seen for
example in evolutionary algorithms. It is very common for one person to carry
out some research and for another to diligently attempt to reproduce it and
obtain different results. This is an ongoing theme in genetic algorithms, and is
the source of seemingly never-ending debates about the virtues and necessities
of various components of those algorithms.

Fourthly, we would perhaps, in time, be led to a theory of falsifiability. There
is currently no way to decide between whether a model is completely wrong,
partially wrong or incredibly close to being right, but with a single variable
critically wrong. So we tinker and play with what we have, adrift in an infinite
space of possibilities – without even any tools for saying where we have been
or what we were close to. It is simpler to tinker a little more with a model
that has received some number of years of development, funding, attention and
expectation than to discard it completely. The academic world does not reward
those sort of “results.” Fortunately, SFI is relatively free from many of these
pressures, making it an ideal place for work that may involve such conclusions.

These methods do not, as yet, exist. We resemble the “scientists” of centuries
gone by. They were determined to be scientists (even before the word existed),
but had no idea how to construct a rigorous experiment. In many cases, they
were completely ignorant of causes, but nevertheless were happy to propose
grandly named theories of just about everything. The use of normative language
in describing experiments and naming principles and theories then, as now, is a
continual source of amazement to me.

I think it is important to recognize that model building is itself an evolution-
ary process. This is especially true, as mentioned above, in cases where getting
the model right can be as difficult as understanding the original problem. If
model building is, as Alan suggests, an art, then we should expect mistakes and
false starts. I believe that Echo has several shortcomings (a couple are removed
in John’s later model) that could or should be removed. These would cost the

9



system in generality, but would provide for less opaque resultant models. The
important thing about making mistakes, if that is what has been done, is that
we have learned many things along the way, and that we apply them. I know I
certainly have and will.

George Cowan once spoke to me after I had given a presentation where I
was probably being somewhat negative about modeling. He told me that he had
seen many examples of bad models that had been presented, that everyone knew
they were wrong, but that they were still useful as they made people think, and
argue and eventually construct better models.

Stephanie Forrest pointed out to me that we shouldn’t expect every single
model to be wildly successful and that a collection of models, each of which
was not particularly useful, might nevertheless produce a great effect. The best
example of such an effect is probably in chess playing programs of artificial intel-
ligence. The incremental steps that have been taken towards producing better
and better chess machines have typically been interesting only as examples of
faster computation, bigger lookup tables, slightly deeper search, expensive hard-
ware, occasional clever algorithms and speed-ups and so on. There is nothing
that I would consider particularly relevant to intelligence in these programs.
Yet they have wrought an enormous change. Forty years ago, literally no-one
thought a computer would ever play good chess, that was a task which defi-
nitely required intelligence (whatever that was). Today, we have conveniently
adjusted our impression of just what intelligence might be. You no longer have
to be intelligent to be a grand master, though it probably helps. It seems clear
from this example that collections of models might do things that none of them
can achieve individually. However this is small solace to the individual model
builder.

There are many ways to view modeling and many ways to use and envision
using models. I am beginning to suspect that everyone’s viewpoint is different.
The premise on which I based much of the preceding discussion is a very narrow
one. Chris Langton, for example, surprised me when talking about models and
modeling. His ideas seem distant cousins to mine, and he doesn’t seem to suffer
from the same anxieties, perhaps because his goals and expectations are more
realistic. For example, he said “I think the point of modeling is to generate
questions, not to generate answers. Ultimately, we want those questions to
give answers, but right now we’re trying to figure out the right questions to
ask.” Chris is interested, amongst other things, in generating a wide range of
models of a particular X and asking what these models have in common. These
views and interests lie far outside the framework under which I built the above
discussion, though I believe that many of the same issues will arise.

There is a large literature that concerns itself with the construction of models
and with modeling in general. There is currently a very active discussion of
some of these issues in relation to the 2050 project. I make no claim to any
deep understanding of the modeling field, or to any great experience. In fact, I
am far happier to claim exactly the opposite (which is much closer to the truth),
that I know next to nothing of the details of all this work. This ignorance can
be excused I hope. I am merely writing down things that have occurred to me,

10



things that others will undoubtedly arrive at SFI without having considered,
things that I would be happy to be educated about, and, questions that I feel
are incredibly important given the nature of what we do at SFI. It is also
important to me that SFI not be seen as the kind of place where people blindly
create fantastic models without reason or thought.

Here are some final suggestions to those who may be embarking on the
modeling journey.

• Build the simplest model you can. If it proves to be too simple, that’s
great. Deliberately design a model whose behavior you will have some
reasonable hope of understanding. While making these decisions do not
ignore what they imply for the implementation of the model, and for how
you hope to be able to examine the results of running the program.

• Introduce as few variables as you can. Three may well be too many.

• Try to decide exactly what you want to do before you try to do it. What,
exactly, is the question you wish to answer? How will you know when you
are done?

• Try to design experiments that have some semblance of a scientific ex-
periment. Can you construct something falsifiable? Can you design good
controls? Will your model be simple enough that someone else will be
able to repeat your work easily?

• Report successes, failures and parameter sensitivities.

• Use sensible language when describing your model – for example, don’t call
something a species unless you are sure you know what a species is. Don’t
say that your agents have “discovered” or “learned” or “evolved” tool us-
age when you filled your world with hammers and nails and provided
your agents with opposable thumbs and convenient subroutines called
PICK UP OBJECT() and HIT OBJECT().

11


